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We propose a protocol to demonstrate the topological order of a spin-1/2 lattice model with four-body
interactions. Unlike other proposals, it does not rely on the controlled movement of quasiparticles, thus
eliminating the addressing, decoherence, and dynamical phase problems related to them. Rather, the protocol
profits from the degeneracy of the ground state. It involves the addition of Zeeman terms to the original
Hamiltonian that are used to create holes and move them around in the system.
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I. INTRODUCTION

The notion of topological order �TO� has gradually be-
come a new and relevant topic in condensed-matter
physics.1,2 It gives rise to a new paradigm of quantum phases
of matter which are endowed with long-range correlations
that cannot be detected by local order parameters.3,4 This is a
new feature not associated with the spontaneous breaking of
a symmetry. Instead, the detection of these new phases in-
volves nonlocal order parameters that reflect the global na-
ture of these new highly strongly correlated systems. Simi-
larly, TOs turn out to be of great interest in quantum
information since they are considered as a resource of ro-
bustness against the decoherence that typically affects all
quantum systems when we try to manipulate them with ease
and control.5 The possibilities range from quantum memories
for storage of quantum states6 to quantum computers capable
of performing a set of universal quantum operations.7–9 The
underlying mechanism for this robustness arises in a typical
scenario where the possible errors in the system are local,
while quantum logical operations are nonlocal and thus po-
tentially resilient to decoherence.

A practical way of describing a TO is as a strongly corre-
lated system with a quantum lattice Hamiltonian with the
following properties: �i� there is an energy gap between the
ground state and the excitations; �ii� the ground state is de-
generate; �iii� this degeneracy cannot be lifted by local per-
turbations. These features reflect the topological nature of the
system. In addition, a signature of the TO is the dependence
of that degeneracy on topological invariants of the lattice
where the system is defined, such as Betti numbers.10 When
the system is placed onto an infinite plane, which has trivial
topology, then the TO manifests itself through the nontrivial
braiding properties of their quasiparticle excitations:11 when
two identical particles are exchanged on the plane, their
common wave function picks up a nontrivial statistical
phase. More generally, when one particle completely en-
circles another particle, the state of the system picks up a
phase factor that is only trivial for bosons and fermions,
otherwise they are Abelian12,13 or non-Abelian anyons.14–16

Thus, braiding statistics is also a signature of TO that can be
tried experimentally. Other signatures such as the topological
entanglement entropy have also been proposed recently.17,18

There has been a number of interesting experiments in
order to detect braiding statistics19–21 in fractional quantum

Hall-effect systems. This has turned out to be more elusive
than detecting fractional charge.22 Thus, a number of experi-
mental proposals has been introduced aiming at providing
additional signatures of braiding statistics23–27 in fractional
quantum Hall systems, both Abelian and non-Abelian, which
in turn would imply TO. For non-Abelian gauge theories, it
is also possible to detect anomalous braiding statistics by
interferometric means.28,29 There exist such intereferometric
proposals for the surface code introduced by Kitaev.30,31 This
is the system in which we are interested here.

In this paper we propose an alternative route to detect TO
directly and without having to resort to interferometry of
quasiparticles to probe their nontrivial braiding statistics. We
use the fact that the ground-state degeneracy is sensitive to
the topology of the surface, which we can alter introducing
Zeeman terms in certain areas of the system. In particular,
our scheme for detecting TO relies on the notion of code
deformations for surface codes.6,32,33

II. MODEL WITH STRING CONDENSATION

A. Hamiltonian and ground state

The topologically ordered system that we consider here
was introduced by Kitaev.5 It is a two-dimensional array of
spin-1/2 systems. Note that any subset C of the spins can be
identified with a binary vector �ei�, where ei=1 if the ith spin
belongs to C and ei=0 otherwise. Then, for each such set C
we introduce the operators

XC
ª �

i
�X

ei, ZC
ª �

i
�Z

ei. �1�

Spins are located at the sites of a “chessboard” lattice �see
Fig. 1�. The Hamiltonian is a sum of plaquette operators Xp,
Zp which depend on the coloring of the plaquette p, dark or
light,

H = − �
p�PD

gpXp − �
p�PL

gpZp, �2�

where gp�0 is the coupling constant at plaquette p, PD �PL�
is the set of dark �light� plaquettes and we identify each
plaquette with the set of spins in its corners. The spectrum of
plaquette operators is �1,−1� and they commute, so that the
ground state is defined by the conditions
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Xp��� = Zp���� = ���, p � PD,p� � PL, �3�

which must hold for all the plaquettes. If we consider that the
lattice extends to infinity or lies on a sphere, there is no
ground-state degeneracy. In particular, the un-normalized
ground state takes the form

�GS� = �
p�PD

�1 + Xp���0� , �4�

where �0 is the state with all spins up. However, if the to-
pology of the surface is nontrivial the ground state is
degenerate.5

B. String operators

A useful notion is that of dark and light strings, see Fig. 1
for examples. Light �dark� strings connect light �dark�
plaquettes, so that each string segment contains a spin. Let �
be a light string and �� a dark one. Then we attach string
operators to them, X� and Z��, identifying strings with the
sets of spins in their segments. An important property is that
�X� ,Z���=0 if � crosses �� and odd number of times,
	X� ,Z��
=0 otherwise. Strings are either closed or have end
points at plaquettes of their color. When � and �� are closed
we have

	X�,H
 = 	Z��,H
 = 0. �5�

Among closed strings we find boundary strings, which re-
ceive this name because they form the boundary of a portion
of the surface. Ground states can be characterized by the fact
that if � and �� are boundaries then

X���� = Z����� = ��� . �6�

This is equivalent to Eq. �3� because plaquettes can be iden-
tified with small boundaries, and boundary string operators
are products of plaquette operators. We can also rewrite Eq.
�4� as

�GS� = �
��BL

X���0� , �7�

where the elements of BL are collections of boundary strings.
If we identify each state X���0� with a string configuration,

that corresponds to �, then the ground state is a coherent
superposition of string states. This is why we say that the
model is a string condensate.11

C. Excitations and topological charge

The excitations of the system have a localized nature and
are subject to an energy gap. In particular, these quasiparti-
cles are related to plaquette operators, so that we say that the
state ��� has an excitation at plaquette p if the corresponding
condition �3� is violated. The energy of the quasiparticle is
�=2gp. Excited states can be obtained from the ground state
by applying open string operators: they create quasiparticles
at their end points.

Excitations have a topological charge, which can be un-
derstood in terms of string operators also. Suppose that we
have several excitations in the shaded region of Fig. 2. Con-
sider a light string � and a dark string �� that surround the
region. We construct four orthogonal projectors that resolve
the identity

Pa,b ª
1

4
	1 + �− 1�aX�
	1 + �− 1�bZ��
, a,b = 0,1. �8�

Each of the sectors �a ,b� projected by Pa,b corresponds to a
different topological charge inside the region. These charges
are integrals of motion because of Eq. �5�. In the ground state
the charge is �0,0�, so this is the trivial charge. Consider a
dark string � � with an end point inside the region, as in Fig.
2. Then we have Z� �Pa,b= Pa+1,bZ� �, with addition modulo
two. Since � � switches the excitations of the dark plaquettes
in its end points, we see that excitations of dark plaquettes
carry the charge �1,0�. Similarly, an excitation of a light
plaquette carries the charge �0,1�. It is easy to check that if a
region is divided on two subregions with charges �a1 ,b1� and
�a2 ,b2�, then its total charge is �a1+a2 ,b1+b2�, again with
addition modulo two. The topological nature of these charges

Z

ZZ

Z

X

XX

Xa

b

1

2

1

22

2

FIG. 1. �Color online� Blue circles represent the spin-1/2 sys-
tems, lying on the sites of the lattice. Zp �Xp� operators correspond
to light �dark� plaquettes such as a �b�. The light �dark� string
represents the product of the plaquette operators of those dark
�light� plaquettes marked with a 1 �2�.

γ

γ′

γ′′

FIG. 2. �Color online� The total topological charge in the shaded
region can be measured using the string operators X� and Z��.
String operators from strings with end points in the region, such as
��, change the charge of the region as they create or destroy a
quasiparticle inside it.
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relies in the fact that when a charge �a1 ,b1� is moved around
a charge �a2 ,b2� the system will pick up a phase
�−1�a1b2+a2b1 which does not depend on the particular
trajectory.5

III. BORDERS AND TOPOLOGICAL DEGENERACY

A. Borders in surface codes

The ground-state subspace of the Hamiltonian �2� is a
surface code, a kind of topological stabilizer code.5 For our
purposes here, a stabilizer code is a subspace defined by
certain conditions, which for surface codes is Eq. �6�. At
first, surface codes were defined in closed surfaces, but this
has a limited use since it is difficult to construct experimental
setups with nonplanar geometries. However, even in the
plane a nontrivial topology is possible if we introduce
borders.34,35

Two kinds of borders can be considered in surface codes,
dark or light. Borders change the concept of closed string. A
dark �light� string is closed either if it has no end points or if
its end points lie on dark �light� borders. Boundaries also
change. A dark �light� string is a boundary if it encloses a
portion of surface which contains no light �dark� borders. In
surface codes, borders can be introduced by changing the
geometry of the lattice. In particular, a dark �light� border
corresponds to a missing big dark �light� plaquette. Then the
code can be described using the conditions �6� under the new
notion of boundary string. As an example, Fig. 3 shows a
dark hole in a lattice. It has been created by erasing several
spins from the lattice, shown in red, and rearranging the
plaquettes accordingly.

The introduction of borders in surface codes allows to
have nontrivial topologies and thus a code subspace with
dimension greater than one. For example, if the surface is a
disk with h holes, with the borders of the same type, then the
dimension of the code is 2h.35 However, there is more to
borders than this. In particular, we can consider adding dy-
namics to the picture. By changing the borders with time we
can initialize, transform, and measure the states of the
code.33 This is a feature of surface codes that we would like
to introduce in the quantum Hamiltonian model, a possibility
that we explore next.

B. Borders in the string condensate

In principle, one could introduce borders in the quantum
Hamiltonian model �2� simply by changing the geometry of

the lattice, that is, as in the surface code of Fig. 3. However,
this would require the ability to engineer a Hamiltonian in
which for example a three-body plaquette term must exist
next to a four-body one and so on. Such a detailed engineer-
ing is not feasible in many situations. Thus, we propose a
different setting in which changes in the topology are pro-
duced by modifying the original Hamiltonian through the
introduction of Zeeman terms and smooth spatial changes of
the couplings.

We start by dividing the system surface in five regions, M,
D, L, DB, and LB. M is the main system, where we are going
to keep the original Hamiltonian and thus the topological
order remains untouched. In the areas D and L there will be
no topological order. As for DB and LB, these are thick
boundaries that separate D from M and L from M, respec-
tively. DB will play the role of a dark boundary and LB that of
a light boundary. An example can be seen in Fig. 4, where
the geometry is that of a disk with a hole, with both borders
of light type.

We have to define the concepts of closed and boundary
strings in our new geometry with the five regions. A dark
�light� string is closed either if it has no end points or if they
lie inside D �L�. A dark �light� string is a boundary if it
encloses a portion of surface not containing any piece of
L�LB �D�DB�. With these definitions, we need a Hamil-
tonian that satisfies Eq. �5� for closed strings and such that its
ground states satisfy Eq. �6� for boundary strings and there
exists an energy gap to states not satisfying them. We will
first show why these conditions are enough to get the desired
properties and afterwards give an example of a Hamiltonian
that satisfies the constrains.

We will work with a particular geometry to fix ideas, the
disk with a hole of Fig. 4. Considering a general case has no
additional complications, but the discussion would be less
transparent. Let V be the subspace defined by conditions �6�,
so that the ground-state subspace is VGS�V. Consider the
light string �1 and the dark string �1� of Fig. 4. They are
closed but not boundaries, and since they cross we have

�X�1 ,Z�1��=0. These operators are the X and Z operators of a
qubit or two-level subsystem, both in V and in VGS. Let us

show this in detail. Note that X�1, Z�1� leave V invariant, as
closed string operators always commute with boundary
string operators. Then we can choose an orthonormal basis
��0;k��k for the subspace of V such that Z��=1, which can be
completed in V with the elements �1;k�ªX�1�0;k�, which

satisfy Z�1�=−1. In other words, V�V� � V2, with V2 a two-
dimensional space. The same is true for VGS, as follows from
Eq. �5�. That is, VGS�VGS� � V2 and V��V� � VGS� .

The point is that the degeneracy of the ground state that
comes from the qubit subsystem has a topological origin and
cannot be lifted by a small local perturbation. This is a con-
sequence of the fact that there is an energy gap to states out
of V and that if � is any local operator then

�a;k���b;k�� = �a,b�0;k���0;k��, a,b = 0,1. �9�

We shall prove this equation in the following. For a local
operator we mean one with a support such as the shaded area
in Fig. 4, which neither encloses the central L region nor

FIG. 3. �Color online� This figure represents a dark hole in a
surface code. Red sites correspond to spins that are not part of the
lattice. Note that a dark hole is nothing but a missing big dark
plaquette. The strings on display are closed but not boundaries.
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connects the interior and exterior L regions. Then there exists
a light string �2 and a dark string �2�, as in the figure, with the
following properties: First, they do not touch the support of

�, so that 	X�2 ,�
= 	Z�2� ,�
=0. Second, we have the equiva-
lences up to homology �1
�2, �1�
�2�, so that X�1X�2 =X�3

and Z�1�Z�2�=Z�3� with �3, �3� boundaries. From these proper-
ties Eq. �9� follows immediately. This equation can also be
interpreted in terms of quantum error correction theory. It
states that we can correct information codified in the qubit
subsystem that has suffered a family of errors �Ei� as long as
any �=Ei

†Ej is local.36

We now give an exactly solvable Hamiltonian that satis-
fies the desired constrains. It takes the form

H = − �
p�PD

gpXp − �
p�PL

gpZp − �
i

��iX
i + �iZ

i� , �10�

where i runs over the sites of the lattice, gp ,�i ,�i	0 are
coupling constants, and we identify a site i with the set �i�.
As long as �i=0 ��i=0� for all the sites i that lie on the
corner of a dark �light� plaquette p with gp�0, the Hamil-
tonian is exactly solvable because all the nonvanishing terms
are commuting projectors. Then, the ground-state subspace is
characterized by the conditions

Xp��� = Zp���� = Zi��� = Xj��� = ��� , �11�

which must hold for all the dark plaquettes p with gp�0,
light plaquettes p� with gp��0, sites i with �i�0, and sites j
with � j �0. It is possible to choose the couplings in such a
way that the conditions �5� and �6� are satisfied. In particular,
�i�0 ��i�0� must be fulfilled in L �D�, whereas �i=0 ��i

=0� in M �D�DB �M �L�LB�. Also, gp�0 must hold for
dark �light� plaquettes in M �LB �M �DB�, whereas gp=0 in
D �L�. All this can be done in such a way that the couplings
vary smoothly across the surface due to the thickness of the
boundary regions LB and DB.

As a result of the above construction, we will find in
general a local degeneracy in the ground state, since there
exist areas in LB �DB� where the only nonzero coupling is gp
in dark �light� plaquettes. This local degeneracy can be re-
moved by letting the support of �i ��i� overlap with that of
the gp of light �dark� plaquettes. In doing so, the Hamiltonian
is no longer exactly solvable, but it will fulfill the required
conditions at least as long as the overlap is not too big. To
see this, note that we can write the Hamiltonian as H�=H
+Hp, where Hp contains those terms that do not commute
with all the terms of H�. Then H is exactly solvable and has
the required properties. Also, 	Hp ,H
=0. Indeed, each of the
terms of Hp commutes with each of the terms in H. Thus, a
small Hp will not destroy the properties of H discussed
above. Still, if the overlap is too big, a level crossing could
occur taking the ground state out of the subspace V described
by Eq. �6�.

C. Surface deformation

Once one is able to engineer the Hamiltonian �10�, the
next step is to adiabatically modify the couplings so that the
geometry of the surface changes slowly with time. Here we
can distinguish two kinds of such surface deformations.
First, we can perform deformations in which only the geom-
etry of the surface, not its topology, change with time. When

γ1

γ2

γ′
1

γ′
2

L

L

LB

LB

M

FIG. 4. �Color online� An example of how light borders are introduced in terms of the regions L, LB, and M. In this case the main region
M, in blue, has the topology of a disk with a hole, with both borders of light type. Examples of closed nontrivial strings are displayed. The
�i are closed because they have no end points. The �i� are closed because their end points lie in L. The shaded area represents the support
of a local operator, which neither encloses the interior L region nor connects both L regions.
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the initial and the final states of the system are the same,
these produce a continuous map of the surface onto itself, so
that in particular strings get transformed. This gives a string
operator mapping, which amounts to perform a definite op-
eration on the encoded subsystem.33 Second, deformations
that change the topology can be considered, such as intro-
ducing or destroying holes and cutting or gluing pieces of the
main surface M. These kinds of processes change the topo-
logical degeneracy of the ground state. When it grows, the
new degrees of freedom will be initialized in a definite way33

due to topological considerations. When it decreases, the lost
degrees of freedom get mapped to possible excitations in the
final state.

This deserves a more detailed explanation. Consider for
example the surface deformation illustrated in Fig. 5, where
two separate pieces of region D get connected, producing a
cut in M. Consider the dark string � that connects both D
areas. We want to show that the deformation amounts to a
measurement of Z�. Before the deformation � is closed—and
we assume that nontrivial—and after the deformation it is a
boundary. Because of the local nature of the deformation, it
cannot change the value of Z�1, which lies outside the area
where the action occurs. But if Z�1 =−1, then the final state
cannot fulfill conditions �6� and thus it is not a ground state.
Which excitations should we find? To answer this, let us
suppose that the coupling �i is big enough in D, so that in
the final state we know that Z�2 =1 is fulfilled for any dark
string �2 lying inside D. Then for the dark boundary string �3
formed by composing �1 and �2, see Fig. 5, and for the final
state ��� we have Z�3���=Z�1Z�2���=Z�1���, since the value
Z�3 = 
1 is related to light plaquette charge inside �3
through Eq. �8�. We see that the cutting process, as an-
nounced, amounts to a measurement of Z2

�, as its value is
mapped to the possible appearance of charge at both sides of
the cut.

For the previous analysis, the deformation needs not re-
ally be adiabatic. It is enough if we can guarantee that there
are no excitations inside D. The particularity of the adiabatic
case is that we expect to find a final state with a single light
plaquette excitation at each side of the cut, since this is a

state in a local energy minimum. We will see an application
of these measurements through surface cutting—and indeed
of all the mentioned kinds of surface deformations—in the
scheme to demonstrate the topological character of the phase
discussed below.

It is worth mentioning that these ideas can be used to
adiabatically initialize the topologically ordered phase. In
this regard, a question was raised in �Ref. 37� about how to
adiabatically initialize these systems so that the topological
protection is present all along the way and not only after
reaching the topological phase. The answer is that, instead of
initializing the whole system at a time, one should progres-
sively grow it from a small island till the desired surface is
covered. In surfaces with nontrivial topology, this means that
at some point two different borders of the system will fuse.
At that point the degeneracy of the ground state will change
as new nontrivial string operators appear. The eigenvalues of
the new string operators that run along such junctions are
necessarily one,33 and thus the final particular ground state of
the system is perfectly determined.

IV. SCHEME FOR DEMONSTRATING TOPOLOGICAL
ORDER

When trying to demonstrate TO, the usual approaches fo-
cus on interferometric experiments with quasiparticles in
which topologically different paths are compared. An imme-
diate problem of such approaches is that the required quasi-
particle superposition of states are subject to decoherence
due to their localized nature and the presence of a noisy
environment. Also dynamical phases have to be taken into
account and properly controlled. Here we adopt a different
approach that eliminates both problems by focusing on the
ground-state degeneracy. The idea is to show that the out-
come of certain processes depends only on topological prop-
erties, thus revealing the topological nature of the system.

The scheme is as follows. We start by making a pair of
holes in our system, a dark one and a light one 	see Fig.
6�a�
. Then we deform both of them as in Fig. 6�b� till they
are separated into two pieces. Notice that since in figure Fig.

γ1γ1

γ2

γ3

D

D

D

D

DB

DB

DB

DB

MM

FIG. 5. �Color online� A deformation in which two separated D regions are put together, which amounts to cut the main region M. To the
left, the geometry before the cut is done. We suppose that �1 is a nontrivial closed string. To the right, the geometry after the cut. Now �1

is a boundary string and so are �2 and �3. If Z�2 =1, then Z�1 =Z�3, that is, the cut maps the value of Z�1 to the light plaquete charge in the
region surrounded by �3.
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6�b� �1 and �1� are boundaries we have X�1 =Z�1�=1. After the
hole breaks into two pieces they still must have the same
value because it is a global property,33 so that we reach the

situation in Fig. 6�c�, where X�2 and Z�2� have completely

undefined values since �X�1 ,Z�2��= �X�2 ,Z�1��=0. We then
proceed to move one of the dark holes along a closed path.
Suppose for the moment that the path is as the one shown in
Fig. 6�d�, that is, that it encloses one of the light holes. The
point is that, after this has been accomplished, the string
operators have deformed accordingly. For example, �1� has
changed and now its place is occupied by �3� 	see Fig. 6�e�
.
If ��� is the state corresponding to that figure, we have

Z�3����=Z�1�Z�2����=Z�2����. A similar analysis holds for a

light string connecting the light holes. When we finally
refuse the holes, as in Fig. 6�f�, we are measuring these string
operators that connect each pair of holes, which have a com-
pletely undefined value, so that there exists a 1/2 probability
that we find charges at both sides of the fusion point, as
follows from the explanation in Sec. III C. The problem of
how to detect this charge would depend on the particular
experimental situation.

Now return to the path in Fig. 6�d� and consider any line
l joining both light holes. We can imagine many other closed
paths, some of them never crossing this line and others cross-
ing it many times. The topological property in which we are
interested is the number of times a path crosses l. If the
number is odd, the situation is the one described above. If it

(a) (b)

(c) (d)

(e) (f)

γ1

γ1

γ2

γ′
1

γ′
1

γ′
1

γ′
2

γ′
2

γ′
3

FIG. 6. �Color online� A step-by-step representation of the proposed scheme, as explained in Sec. IV.

H. BOMBIN AND M. A. MARTIN-DELGADO PHYSICAL REVIEW B 78, 165128 �2008�

165128-6



is even, then it is equivalent to doing nothing and if we
refuse the holes we will never find charges.33 Also, note that
several quasiparticles could be created during the fusion of
the holes if it is not adiabatic, but the evenness or oddness of
the number of particles created at each side is topologically
protected since it gives the total topological charge.

Thus the topological nature of the system manifests in the
fact that the experiment is sensitive to the topology of the
chosen path. Moreover, the underlying Z2 nature of the sys-
tem is revealed also: only the evenness or oddness of the
linking number is important. With this scheme we have in-
troduced a way to probe the existence of a TO. It does not
involve the ability to manipulate individual quasiparticle ex-
citations, but instead relies solely on the peculiar ground-
state properties of topologically ordered quantum systems.

V. FINAL REMARKS

Although we have restricted ourselves to the Kitaev Z2
model, it is possible to consider generalizations to ZD sys-
tems or even non-Abelian models. In this regard, as noted
above, the definition of holes in terms of open strings is a
natural starting point and a much richer family of “holes” is
expected in such systems, but the basic mechanism for topo-
logical detection without resorting to quasiparticle interfer-
ometry remains the same.
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